

Содержание

1. Введение	3
1.1. Описание документа	3
1.2. Версия встроенного обеспечения	4
1.3. Предупреждения	5
2. PPTP Client	6
3. L2TPv2 Client	8
4. OpenVPN туннели	10
4.1. OpenVPN Layer 2: dev TAP	10
4.2. OpenVPN Layer 3: dev TUN	13
5. GRE туннели	14
5.1. Настройка GRE туннеля уровня L2	14
5.2. Настройка GRE туннеля уровня L3	17
6. IPsec туннели	20
6.1. Настройка IPSec туннеля	20
6.2. Статус IPSec туннеля	24
7. DMVPN / NHRP туннели (только для роутеров серии R4, R2)	26
8. ЕОІР туннели	29
9. L2TРv3 туннели	31
10. Термины и сокращения	33
11. Контакты	37

1. Введение

1.1. Описание документа

Данный документ содержит примеры корректной конфигурации сетевых служб PPTP Client, L2TPv2 Client, OpenVPN Tunnel, GRE Tunnels, DMVPN/NHRP, EoIP Tunnels, L2TPv3 Tunnels, IPsec Tunnels в решениях, построенных на базе роутеров iRZ. Для получения информации о работе самих устройств смотрите соответствующее руководство пользователя. Для получения информации о веб-интерфейсе роутеров смотрите документ «Руководство пользователя. Средства управления и мониторинга на роутерах iRZ».

Дата публикации	Изменения
14.03.2019	Основной документ
24.12.2019	Изменения в разделе L2TPv2
18.06.2021	Переход на встроенное ПО версии v20.1, изменения в разделах DMVPN/NHRP туннели, IPsec туннели
26.08.2021	Проверка состояния соединения для РРТР и L2TPv2 туннелей
01.09.2021	Переход на встроенное ПО версии v20.2
27.01.2022	Переход на встроенное ПО версии v20.3
26.02.2022	Переход на встроенное ПО версии v20.3.1
14.07.2022	Переход на встроенное ПО версии v20.4
08.08.2022	Изменения в разделах DMVPN/NHRP туннели, IPsec туннели
18.10.2022	Переход на встроенное ПО версии v20.4.3
29.11.2022	Переход на встроенное ПО версии v20.5
28.02.2023	Переход на встроенное ПО версии v20.6, изменения в разделах DMVPN / NHRP туннели, IPsec
07.06.2023	Переход на встроенное ПО версии v20.7
28.06.2023	Переход на встроенное ПО версии v20.7.1
25.10.2023	Переход на встроенное ПО версии v20.8, изменения в разделах DMVPN / NHRP туннели, GRE туннели, OpenVPN туннели

1.2. Версия встроенного обеспечения

Актуальная (текущая) версия встроенного ПО

- роутеры серии R0: R0-v20.8 (2023-10-25)
- роутеры серии R2: R2-v20.8 (2023-10-25)
- роутеры серии R4: R4-v20.8 (2023-10-25)
- роутеры серии R50: R50-v20.8 (2023-10-25)

1.3. Предупреждения

Отклонение от рекомендованных параметров и настроек может привести к непредсказуемым последствиям и значительным издержкам как в процессе пусконаладки вычислительного комплекса, так и во время эксплуатации production-версии вычислительного комплекса в реальных условиях.

Прежде чем вносить любые изменения в настройки оборудования, устанавливаемого на объекты, настоятельно рекомендуется проверить работоспособность всех параметров новой конфигурации на тестовом стенде. Также не следует ограничиваться синтетическими тестами, а максимально реалистично воспроизвести условия, в которых будет эксплуатироваться оборудование.

2. PPTP Client

Enable PPTP Client

ភ្ល

ភ្

Туннель РРТР представлен на роутерах iRZ в виде клиентской части. Для подключения к серверу РРТР необходимо указать адрес сервера в виде IP адреса или его доменного имени, логин и пароль клиентского доступа и выбрать тип аутентификации.

Для сохранения выполненных настроек, используйте кнопку Save.

При переходе на другие страницы разделов все выполненные, но не сохраненные настройки будут сброшены!

Server		Firewall Zon	e	
127.0.0.1		<none></none>		~
✔ Use as default route				
Username		Password		
username		•••••		
Use MPPE (MS-CHAP-V2 auth)				
Additional Options		Authenticati	on Type	
		PAP		~
Failover management				
Ping Address	Ping Interval (sec)		Ping Attempts	
Enter address to check connection	Default 30 seconds	S	3 by default	
Enter address to check connection		5	3 by detault	
				Save

Рис. 1. Пример интерфейса PPTP Client

Для авторизации на сервере представлены следующие распространенные типы аутентификации для PPTP туннеля: EAP, PAP, CHAP и MPPE (MS-CHAP-V2). Значение Any в поле Authentication Туре позволяет договариваться с сервером PPTP о методе аутентификации в автоматическом режиме.

Failover management (проверка состояния соединения)

Предусмотрена проверка состояния соединения при помощи отправки ICMP-пакетов (пинга) указанного адреса.

В поле **Ping Address** указывается IP-адрес или доменное имя сервера для проверки работы соединения. Можно указать несколько IP-адресов или доменов через ПРОБЕЛ. В поле **Ping Interval** задается периодичность запуска пинга (в секундах). В поле **Ping Attempts** указывается количество неудачных попыток подряд.

В момент начала отслеживания соединению (маршруту) присваивается приоритет по умолчанию.

Управление маршрутами находится в разделе Network - Routes

- Если после отправки ICMP-пакета на сервер поступает ответ, маршрут считается работающим. Никаких дополнительных действий не происходит.
- Если после отправки ICMP-пакета на сервер ответа не поступает, попытка считается неудачной, начинает отсчитываться Ping Attempts. Маршрут переводится в резервный.
 - Если следующая попытка соединения будет удачной, маршруту возвращается исходный приоритет.
 - Если количество неудачных попыток подряд достигнет заданного, интерфейс будет перезапущен и через какое-то время маршрут стартует с приоритетом по умолчанию.

Для включения функции должен быть выбран параметр Default Route

3. L2TPv2 Client

Туннель L2TP версии 2 на роутерах представлен только в виде клиентской части. Для подключения к удаленному серверу необходимо указать адрес или доменное имя сервера и логин с паролем.

Server		Firewall Zone		
127.0.0.1		<none></none>		
Use as default route				
Username		Password		
username		*******		
✓ Use MPPE (MS-CHAP-V2 auth)				
Additional Options				
Use IPSec Protection				
PSec Pre-Shared Key				
15975366				
Failover management				
Ping Address	Ping Interval (sec)		Ping Attempts	
Enter address to check connection	Default 30 seconds	3	3 by default	

Рис. 2. Пример интерфейса L2TPv2 Client

Таблица 1. Поля в разделе L2TPv2 Client

Поле	Описание
Use as default route	Использовать как маршрут по умолчанию. В этом случае роутер будет направлять весь трафик через данный туннель, в таблице маршрутизации маршрут через данный туннель будет приоритетным. Таким образом, остальные WAN интерфейсы (такие как подключение через сотовую сеть или отдельный WAN порт) станут резервными, и переключение с одного WAN порта на другой не будет приводить к разрыву туннеля, то есть его переподключению
Use MPPE (MS- CHAP-V2)	Заставит роутер подключаться к серверу L2TP только по указанному протоколу аутентификации
Additional Options	Позволяет прописывать дополнительные опции для работы туннеля
Use IPSec Protection	Дает возможность настроить шифрование туннеля с помощью IPSec. Данный функционал разработан для взаимодействия с сетевым оборудованием Mikrotik. В поле IPSec Pre-Shared Key следует вписать ключ

Failover management (проверка состояния соединения)

Предусмотрена проверка состояния соединения при помощи отправки ICMP-пакетов (пинга) указанного адреса.

В поле **Ping Address** указывается IP-адрес или доменное имя сервера для проверки работы соединения. Можно указать несколько IP-адресов или доменов через ПРОБЕЛ. В поле **Ping Interval** задается периодичность запуска пинга (в секундах). В поле **Ping Attempts** указывается количество неудачных попыток подряд.

В момент начала отслеживания соединению (маршруту) присваивается приоритет по умолчанию.

Управление маршрутами находится в разделе Network - Routes

- Если после отправки ICMP-пакета на сервер поступает ответ, маршрут считается работающим. Никаких дополнительных действий не происходит.
- Если после отправки ICMP-пакета на сервер ответа не поступает, попытка считается неудачной, начинает отсчитываться Ping Attempts. Маршрут переводится в резервный.
 - Если следующая попытка соединения будет удачной, маршруту возвращается исходный приоритет.
 - Если количество неудачных попыток подряд достигнет заданного, интерфейс будет перезапущен и через какое-то время маршрут стартует с приоритетом по умолчанию.

ñ

Для включения функции должен быть выбран параметр Default Route

4. OpenVPN туннели

4.1. OpenVPN Layer 2: dev TAP

В данном разделе рассматривается туннель OpenVPN типа Ethernet Bridging.

Этот тип туннеля OpenVPN характеризуется общим адресным пространством между устройствами, а маршрутизаторы, на которых создается OpenVPN, прозрачны для остальных сетевых устройств. Данный туннель создаётся на базе виртуального сетевого интерфейса TAP.

Всего четыре варианта настройки туннеля, различающиеся по методу аутентификации:

- без аутентификации (Authentication method: None);
- с аутентификацией по общему ключу (Authentication method: Shared secret);
- в роли сервера OpenVPN (Authentication method: TLS Server);
- в роли клиента OpenVPN (Authentication method: TLS Client).

При этом необходимо учитывать, что туннель может работать по двум сетевым протоколам: UDP и TCP. Для протокола TCP есть возможность работать по методу сервера, когда роутер ожидает подключения извне, так и по методу клиента, когда роутер инициирует подключение с другим сетевым устройством.

OpenVPN tunnels To HQ (tunnel) example.com	Z Enabled	Edit	Remove
from another branch office (openvpn1)	□ Enabled	Edit	Remove
		Add Tunnel	Save

Рис. 3. Пример интерфейса раздела OpenVPN tunnels

Для настройки OpenVPN-туннеля с TAP (Layer 2), в веб-интерфейсе роутера:

- 1. Зайдите в раздел Network → OpenVPN Tunnel;
- 2. Поставьте галочку напротив пункта Enable OpenVPN tunnel;
- 3. Выберите в поле Device значение TAP (L2);
- 4. Настройте остальные параметры на странице в зависимости от требуемой конфигурации (см. таблицы ниже).

Edit tunnel: Unnamed (tunnel)

Description	
Device	Transport Protocol
TAP (L2)	UDP 🗸
Remote Address	Port
IP or domain name	1194
Authentication Method	Add to Bridge or Create New
None 🗸	none 🗸
Tunnel IP	Tunnel Mask
Remote Subnet Remote Subne	t Mask Remote Gateway
Ping Interval	Ping Timeout
LZO Compression	
No 🗸	
Additional Config	
	Close Apply changes

Рис. 4. Пример конфигураций OpenVPN. Настройка OpenVPN

Таблица 2. Настройки OpenVPN Tunnel → ТАР (L2), основные настройки

Поля	Описание
Description	Описание и имя туннеля. Это же имя отображается во всех остальных настройках роутера (например, в разделе Firewall)
Device	Выбор виртуального интерфейса
	Выбор транспортного протокола:
	• UDP;
	TCP Server;
Transport Protocol	TCP Client.

Таблица 2. Настройки OpenVPN Tunnel → ТАР (L2), основные настройки

Remote Address	IP-адрес удаленного сетевого устройства (указывается если Transport Protocol = UDP или TCP Client)
Port	Номер порта, через который будет работать туннель
Authentication Method	Метод авторизации
Advanced Settings:	Нажмите на строчку Show advanced settings, чтобы открыть доступ к настройкам
Add to Bridge or Create New	Создание моста с локальными интерфейсами роутера
Ping Interval	Время в секундах, через которое будут отсылаться ICMP-пакеты для проверки доступности удаленного сетевого устройства (и соответственно работы туннеля)
Ping Timeout	Время ожидания в секундах, через которое устройство попытается заново создать OpenVPN-туннель, если ответ от удаленного устройства не будет получен
	Режим сжатия данных, проходящих через туннель:
	• No — отсутствие сжатия данных
	• Always — всегда сжимать данные
LZO Compression	• Adaptive — адаптивное сжатие данных, режим по умолчанию
Tunnel IP	IP-адрес туннеля на данном устройстве
Tunnel Mask	Маска IP-адреса туннеля на данном устройстве
Remote Subnet	IP-адрес удаленной сети (на другом конце туннеля), который необходим для создания маршрута в таблице маршрутизации
Remote Subnet Mask	Маска удаленной сети (на другом конце туннеля)
Remote Gateway	Шлюз удаленной сети (на другом конце туннеля)

Поле Additional Config позволяет указывать дополнительные параметры для создания туннеля. Пункты и их расшифровка, которые указываются в данном поле, можно посмотреть на официальном сайте OpenVPN по адресу: https://openvpn.net/index.php/opensource/documentation/howto.html#server.

4.2. OpenVPN Layer 3: dev TUN

В данном разделе рассматривается туннель OpenVPN типа Routing.

Данный тип туннеля OpenVPN характеризуется маршрутизацией пакетов между сетями на разных концах туннеля, находящимися за сетевыми устройствами, и устанавливающими туннель между собой. Данный вид туннеля создается на базе виртуального сетевого интерфейса TUN.

Всего четыре варианта настройки туннеля, различающиеся по методу аутентификации:

- без аутентификации (Authentication method: None);
- с аутентификацией по общему ключу (Authentication method: Shared secret);
- в роли сервера OpenVPN (Authentication method: TLS Server);
- в роли клиента OpenVPN (Authentication method: TLS Client).

При этом необходимо учитывать, что туннель может работать по двум сетевым протоколам: UDP и TCP. Для протокола TCP есть возможность работать по методу сервера, когда роутер ожидает подключения извне, так и по методу клиента, когда роутер инициирует подключение с другим сетевым устройством.

Для настройки OpenVPN-туннеля с TUN (Layer 3), в веб-интерфейсе роутера:

- 1. Зайдите в раздел Network → OpenVPN Tunnel;
- 2. Поставьте галочку напротив пункта Enable OpenVPN tunnel;
- 3. Выберите в поле Device значение TUN (L3);
- 4. Настройте остальные параметры на странице в зависимости от требуемой конфигурации.

5. GRE туннели

5.1. Настройка GRE туннеля уровня L2

В примерах настройки используется следующая схема сети:

Рис. 5. Примеры конфигураций GRE. Схема сети

Для настройки GRE-туннеля уровня L2, в веб-интерфейсе роутера (см. рисунок ниже):

- 1. Зайдите в раздел Network → Local Network;
- 2. Укажите IP-адрес локального пользователя в поле IP;
- 3. Укажите маску сети в поле Mask;

Local Network (lan)		Remove
CPU port	VLAN ID	Switch Ports PORT1 PORT2 PORT3 PORT4
IP	Mask	MAC
10.0.3.1	255.255.255.0	f0:81:af:00:8f:64
		Add VLAN Save

Рис. 6. Примеры конфигураций Local Network. Настройка локальной сети

Далее необходимо настроить WAN-порт роутера (см. следующий рисунок):

4. Зайдите в раздел Network → Wired Internet;

5. Укажите тип подключения в поле Connection Type (Static – статический адрес, DHCP – адрес

Wired Internet (wan66)			Remove
CPU Port	VLAN ID	Switch Ports	
ETH0 •	66	PORT1 PORT2 PORT3 PORT4	
Connection Type		MAC	
Static	Ŧ	Leave blank to use hardware default	
IP	Mask	Gateway	
10.0.1.5	255.255.252.0	10.0.1.6	
Ping Address	Ping Interval (sec)	Ping Attempts	
Enter address to check connect	ction Default 30 second	Default 3 times	
		Add VLAN	Save

Рис. 7. Примеры конфигураций Wired Internet. Настройка WAN

Далее необходимо настроить GRE-туннель (см. следующий рисунок):

- 6. Зайдите в раздел VPN/Tunnels → GRE Tunnels;
- 7. Добавьте новый туннель, нажав на кнопку Add Tunnel;
- 8. Введите имя туннеля (на выбор пользователя) в поле Name;
- 9. Выберите локальный интерфейс, через который будет работать туннель в поле Local Address;
- 10. Укажите IP-адрес порта удаленного устройства, с которым будет построен туннель, в поле **Remote Address**;
- 11. Выберите на каком уровне будет работать туннель в поле **Network Type** (в данном примере рассматривается **L2**);
- 12. Выберите с каким LAN интерфейсом будет создан bridge или задайте отдельную сеть для GRE- туннеля, выбрав значение в поле Add to Bridge or Create New (если значение = LAN, то дополнительных настроек не требуется, если значение = <new network>, то необходимо будет указать IP-адрес пользовательского интерфейса в поле Tunnel IP и маску сети в поле Tunnel Mask);
- 13. Выберите к какой зоне Firewall необходимо отнести туннель (к зоне Lan или зоне WAN), выбрав значение в поле Firewall Zone (правила можно настроить вручную в разделе Services → Firewall);
- 14. При необходимости укажите ключ туннеля **GRE key** (данный пункт чаще всего необходим если вы устанавливаете несколько таких туннелей с одним удаленным узлом).
- 15. При необходимости поставьте устройству запрет на фрагментацию (разделение) пакета на маршруте следования, поставив галочку напротив пункта **Don't fragment**.

Create new GRE

Local Address	Remote Address
wan66	 Only remote IP
Network Type	
L2 layer	,
Add to Bridge or Create New	
<new network=""></new>	
Tunnel IP	Tunnel Mask
172.0.1.6	255.255.255.0
GRE key	Firewall Zone
Leave blank if not used	lan •
B Death Francisco de actor	

Рис. 8. Примеры конфигураций GRE. Настройка GRE-туннеля

5.2. Настройка GRE туннеля уровня L3

В примерах настройки используется следующая схема сети:

Рис. 9. Примеры конфигураций GRE. Схема сети

Для настройки GRE-туннеля уровня L3, в веб-интерфейсе роутера (см. рисунок ниже):

- 1. Зайдите в раздел Network → Local Network;
- 2. Укажите IP-адрес локального пользователя в поле IP;
- 3. Укажите маску сети в поле Mask;

n)			Remove
	VLAN ID	Switch Ports	
•	1	PORT1 PORT2 PORT3 PORT4	
	Mask	MAC	
	255.255.255.0	f0:81:af:00:8f:64	
		Add VLAN	Save
	n) •	n) VLAN ID 1 Mask 255.255.255.0	n) VLAN ID Switch Ports 1 PORT1 PORT2 PORT3 PORT4 Mask MAC 255.255.255.0 f0:81:af:00:8f:64 Add VLAN

Рис. 10. Примеры конфигураций GRE. Настройка локальной сети

Далее необходимо настроить WAN-порт роутера (см. рисунок ниже):

4. Зайдите в раздел Network → Wired Internet;

5. Укажите тип подключения в поле Connection Type (Static – статический адрес, DHCP – адрес получаемый по DHCP);

Wired Internet (wan66)				Remove
CPU Port	VLAN ID	Switch Ports		
ETH0 •	66	PORT1 PORT2 PORT3 PORT4		
Connection Type		MAC		
Static	Ŧ	Leave blank to use	hardware default	
IP	Mask		Gateway	
10.0.1.5	255.255.252.0		10.0.1.6	
Ping Address	Ping Interval (sec)		Ping Attempts	
Enter address to check connect	ction Default 30 second	ls	Default 3 times	
			Add VLAN	Save

Рис. 11. Примеры конфигураций GRE. Настройка WAN

Далее необходимо настроить GRE-туннель (см. рисунок ниже):

- 6. Зайдите в раздел VPN/Tunnels → GRE Tunnels;
- 7. Добавьте новый туннель, нажав на кнопку Add Tunnel;
- 8. Введите имя туннеля (на выбор пользователя) в поле Name;
- 9. Выберите интерфейс, через который будет работать туннель в поле Local Address;
- 10. Укажите IP-адрес порта удаленного устройства, с которым будет построен туннель, в поле **Remote Address**;
- 11. Выберите на каком уровне будет работать туннель в поле **Network Type** (в данном примере рассматривается L3);
- 12. Укажите IP-адрес интерфейса в поле **Tunnel IP**; а также его маску в поле **Tunnel Mask** при необходимости, если не указывать маска будет назначена автоматически и будет равна /32.
- 13. Выберите правило работы межсетевого экрана (firewall), если необходимо, выбрав значение в поле **Firewall Zone** (правила можно настроить вручную в разделе **Services** → **Firewall**);
- 14. Укажите в поле **Keepalive Delay** временной интервал в секундах, по истечении которого идет проверка соединения со встречной стороной;
- 15. Укажите в поле **Keepalive Retries** количество неудачных попыток, после которых туннель GRE отключится. При получении первого ответа от встречной стороны соединение восстанавливается;
- 16. При необходимости, поставьте устройству запрет на фрагментацию (разделение) пакета на маршруте следования, поставив галочку напротив пункта **Don't fragment**.

Create new GRE

Local Address	Remote Address
wan	✓ Only remote IP
Network Type	
L3 layer	
Tunnel IP	Tunnel Mask
Local IP address for tunnel	Netmask
GRE key	Firewall Zone
172.0.1.6	wan
Keepalive Delay	Keepalive Retries

Рис. 12. Примеры конфигураций GRE. Настройка GRE-туннеля

6. IPsec туннели

6.1. Настройка IPSec туннеля

Для создания IPsec-туннеля на роутере должна быть настроена локальная сеть и порты WAN.

Добавить новый IPsec-туннель можно, нажав на кнопку Add Tunnel.

Разрешить или запретить работу уже настроенного туннеля можно, поставив галочку в поле **Enable**.

Изменить параметры или удалить туннель можно с помощью кнопок Edit и Remove.

iRZ RU23w				20	22-05-31 14:00:34
Status	Network	VPN / Tunnels	Services		Tools
PPTP Client	IPSec tunnels				
L2TPv2 Client	To HQ		Enable	Edit	Remove
OpenVPN Tunnels	wan13 ++ 2.2.2.2				
GRE Tunnels					
DMVPN / NHRP	☑ Debug □ Make-before-break			Add Tunnel	Save
EoIP Tunnels					
L2TPv3 Tunnels					
IPSec Tunnels					
iRZ ATunnel					

Рис. 13. Вкладка IPSec/Tunnels. Раздел IPSec tunnels

Чекбокс Debug увеличивает количество отладочной информации в логе.

Чекбокс **Make-before-break** включает соответствующий метод повторной аутентификации. В этом случае сначала создаются дубликаты SA (Security Associations), перекрывающиеся с существующими, а только затем удаляются старые. Это позволяет избежать разрывов соединения.

Для того чтобы метод **Make-before-break** работал, нужно чтобы оба одноранговых узла могли обрабатывать перекрывающиеся SA.

Edit tunnel: To HQ (ipsec1)

Description		
To HQ		
Source Address		Remote Address
wan13	~	2.2.2.2
.ocal Identifier		Remote Identifier
left		right
Key Exchange Mode		DPD Delay (sec)
ikev2	~	5
ocal Subnets		Remote Subnets
+ Subnet Address		+ Subnet Address
ocal Source Address Type		Remote Source Address Type
Config	~	None
ocal Source IP		
10.44.25.1		
Phase #1		Phase #2
Lifetime		Lifetime
28800		3600
IKE Encryption		ESP Encryption
aes256	~	aes256 🗸
IKE Hash		ESP Hash
sha256	~	sha1 🗸
DH Group		PFS Group
14	~	<none> ¥</none>
Authentication Method		
psk		· · · · · · · · · · · · · · · · · · ·
Pre-Shared Key		

Рис. 14. Примеры конфигураций IPsec. Настройка IPsec-туннеля

Таблица 3. Параметры туннеля

ĩ

Поля	Описание
Description	Описание туннеля (на выбор пользователя)
Source Address	Физический интерфейс, через который будет работать туннель Default – через интерфейс, являющийся на данный момент активным WAN- портом, другие варианты - SIM1, SIM2, WAN
Remote Address	IP-адрес порта удаленного хоста, с которым строится туннель. Можно указать несколько адресов через ПРОБЕЛ. IPSec выполняет попытки подключения к хостам в порядке перечисления. Таймаут подключения 60 сек. Если в течение этого времени подключение не произошло, происходит переключение на следующий адрес и так по кругу.
Local Identifer	Локальный идентификатор (наименование, указывается пользователем)
Remote Identifer	Идентификатор удаленной стороны (наименование, указывается пользователем)
Key Exchange Mode	Версии протокола обмена ключей при установлении туннеля - IKEv1 или IKEv2
Exchange Mode	Только при условии Key Exchange Mode версии IKEv1. Режим установления соединения между участниками туннеля (Main – основной, Aggressive – более быстрый, но без обеспечения защиты подлинности на данном этапе).
Dead Peer Detect	Интервал в секундах, через который будет определяться доступность узла на противоположном конце туннеля (0 – отключение данной функции)
Local Subnets	Список адресов сетей с локальной стороны, между которыми устанавливается туннель (записываются в формате CIDR)
Remote Subnets	Список адресов сетей с удаленной стороны, между которыми устанавливается туннель (записываются в формате CIDR)
Local Source Address Type	Тип получения виртуального IP адреса для локальной стороны (None - не настраивается, Config - автоматически, Manual - вручную)
Remote Source Address Type	Тип получения виртуального IP адреса для удаленной стороны (None - не настраивается, Config - автоматически, Manual - вручную)
Local Source IP	Виртуальный IP адрес локальной стороны, используемый туннелем
Remote Source IP	Виртуальный IP адрес удаленной стороны, используемый туннелем
Authentication Method	psk – по общему ключу, pubkey – по сертификату и ключу RSA

Ha оборудовании iRZ в целях безопасности для входящих подключений запрещено использование функции IPsec с параметрами: KeyExchangeMode = ikev1, Agressive mode=yes, Authentification Method = PSK.

Таблица 4. Параметры Phase #1

Поля	Описание
Lifetime	Время жизни ключа в секундах, создаваемого на этапе фазы. Рекомендуется устанавливать значение минимум в два раза больше, чем у фазы 2 (например, 24 часа или 86400 секунд).
IKE Encryption	Выбор алгоритма шифрования: AES 128, AES 192, AES 256, 3DES.
IKE Hash	Выбор алгоритма для проверки целостности данных: SHA-1, SHA-256, SHA- 512, SHA-384, MD5.
DH Group	Выбор криптографического алгоритма, который позволяет двум точкам обмениваться ключами через незащищенный канал. Числа – обозначают сложность ключа, чем выше, тем надежнее ключ.
Таблица 5. Пар	аметры Phase #2
Поля	Описание
Lifetime	Время жизни ключа в секундах, создаваемого на этапе фазы. Рекомендуется устанавливать значение меньше, чем у фазы 1 (например, 1 час или 3600 секунд).
ESP Encryption	Выбор алгоритма шифрования: AES 128, AES 192, AES 256, 3DES.
Выбор алгоритма для проверки целостности данных: SHA-1, SHA-256 ESP Hash 384, SHA-512, MD5.	
PFS Group	Выбор криптографического алгоритма, который удостоверяет, что ключи, используемые в фазе 2 не получены от фазы 1. Числа – обозначают сложность ключа, чем выше, тем надежнее ключ.
Authenticat	ion Method
pubkey	~
CA Certifica	ate
Upload	CA PEM certificate
Local Certif	icate
Upload	PEM certificate
Key	
Upload	PEM key
	Close Apply changes

Рис. 15. Способ аутентификации pubkey

После удаления туннеля загруженные сертификаты удаляются автоматически при нажатии кнопки Save.

ฏ

6.2. Статус IPSec туннеля

На вкладке Status представлена информация о состоянии туннелей, настроенных на роутере.

IPSec tunnel — информация о работе IPSec туннеля

IPSec IKEv1 tunnel (HQ)

Status	Waiting for traffic between SA	Established	
Source	sim1	Remote	3.3.3.3
SA (Local - Remote)	dynamic - 2.2.2.2/32	Status	Waiting for traffic between SA
SA (Local - Remote)	dynamic - 4.4.4.4/32	Status	Waiting for traffic between SA
Phase1	aes256 / sha256 / DH:14	Phase2	aes256 / sha1 / PFS:15

IPSec IKEv2 tunnel (Center)

Status	Waiting for traffic between SA	Established	
Source	default route	Remote	3.3.3.4
Local SA	default route	Remote SA	5.5.5.5/24 6.6.6.6/24
Phase1	aes256 / sha256 / DH:14	Phase2	aes256 / sha1 / PFS:NONE

Рис. 16. Пример информации в разделе IPSec tunnel

Таблица 6. Поля в разделе Status для IPSec туннеля

Поле	Описание
Status	Текущий статус туннеля
Source	Локальный интерфейс, через который будет работать туннель (Default route – через интерфейс, являющийся на данный момент активным WAN-портом)
Remote	Доменное имя или IP-адрес порта удаленного устройства, с которым будет построен туннель
SA (Local - Remote)	Security Associations, политики безопасности
Phase 1, 2	Параметры аутентификации и шифрования для Фазы 1 и Фазы 2

Поле **Status** описывает текущее состояние туннеля. Возможные значения поля описаны в таблице ниже.

Таблица 7. Возможные значения поля Status

Поле	Описание
Network not available	Адрес источника с локальной стороны (Source Address) не доступен
Waiting for traffic between SA	Ожидание трафика между между локальной (Local subnets / Source Address) и удалённой стороной (Remote Subnets / Remote Address) чтобы инициировать обмен ключами и согласование политик
Phase 1 established	Обмен ключами прошел успешно, Phase 1 построена, Phase 2 не построена. Трафик не идёт
Installed	Туннель построен, трафик шифруется
Down	Роутер ожидает подключения клиентов (Remote Address указан как 0.0.0.0)

7. DMVPN / NHRP туннели (только для роутеров серии R4, R2)

Dynamic Multipoint VPN (DMVPN) — виртуальная частная сеть с возможностью динамического создания туннелей между узлами. Роутеры iRZ для данного туннеля могут выступать только в роли Spoke- маршрутизатора.

Для создания данного туннеля необходимо в разделе VPN/Tunnels → DMVPN/NHRP нажать кнопку Add Tunnel и на открывшейся странице настроек (см. рисунок ниже) заполнить поля согласно таблице приведенной далее.

Edit tunnel: mgre1

Description	Local NBMA Address	Remote NBMA Address
	<default></default>	IP or domain name
Local Tunnel Address	HUB Tunnel Address	Tunnel Netmask
IP address	IP address	ex. 255.255.255.0
GRE key	Holding Time (sec.)	Firewall Zone
Leave blank if not used	default 7200 sec.	<none> \$</none>
No Caching	Allow Shortcuts	
HUB is Cisco		
Use IPSec Protection		
		Close Apply Changes

Рис. 17. Страница настроек DMVPN/NHRP

Таблица 8. Настройки DMVPN/NHRP

Описание
Описание или название туннеля.
Локальный адрес сети - NBMA(Non Broadcast Multiple Access), необходимо выбрать один из интерфейсов роутера; значение <default> означает использование интерфейса с маршрутом по умолчанию.</default>
Удаленный адрес NBMA — указывается только IP адрес.
Туннельный IP адрес данного роутера.
Туннельный IP адрес HUBa к которому происходит подключение.
Маска сети туннеля.
Идентификационный ключ GRE туннеля в случае если данный функционал используется в конфигурации.
Время (в секундах) в течение которого информация о соседнем NBMA хосте считается действительной.
Зона, в которой будет находится туннель и соответственно политики фаервола, которые будут применяться к данному туннелю.
Отключает кэширование информации о пирах из пересылаемых пакетов ответа на разрешение NHRP. Это можно использовать для уменьшения потребления памяти в больших подсетях NBMA.
Разрешает помещение в таблицу маршрутизации только тех префиксов, которые реально используются в данный момент времени.
Данная настройка позволяет ввести ключ аутентификации в случае если хабом является оборудование компании Cisco.

Cisco Authentication

cisco Addientication

🗹 No Unique

Allow Redirects

ĩ

No Unique	Флаг неуникальности ip-адреса туннеля в базе nhrp на hub- маршрутизаторе	
Allow Redirects	Разрешает направлять трафик напрямую между spoke маршрутизаторами в обход хаба	
Use IPSec Protection	Открывает дополнительное поле с возможностью настроить шифрование туннеля с помощью IPSec	

В случае использования шифрования туннеля с помощью технологии IPSec необходимо настроить соответствующие параметры туннеля. Подробная информация о каждом параметре приведена в разделе IPsec туннели.

Таблица 9. Настройка шифрования туннеля с помощью IPSec

Поля	Описание
Local Identifier	Локальный идентификатор.
Remote Identifier	Идентификатор удаленной стороны.
Key Exchange Mode	Предназначено для переключения между первой и второй версиями обмена ключей.
Authentication Method	Способ аутентификации узлов туннеля: psk – по общему ключу, rsasig – по сертификату и ключу RSA (то же что и pubkey).
DPD Delay (sec.)	Интервал отправки DPD и keepalive пакетов.
DPD Timeout (sec.)*	Интервал по которому рвётся соединение.
Agressive Mode*	Включение/отключение более активного [быстрого] режима (без обеспечения защиты подлинности).

Редактирование DPD Timeout и Aggressive Mode возможно только в режиме IKEv1 для Key Exchange Mode.

8. ЕОІР туннели

Ethernet over IP (EoIP) — тип туннеля, разработанный компанией MikroTik, представляет собой Ethernet туннель точка-точка поверх IP подключения. Данный туннель создает мост между двумя роутерами как будто эти роутеры подключены друг к другу напрямую через физические ethernet порты. Такой туннель можно создавать поверх любого другого туннеля или подключения, умеющего транспортировать протокол IP. Пример настроек туннеля приведен на рисунке ниже.

Create new EoIP

Name	
Name	
Local Address	Remote Address
loopback	Only remote IP
Add to Bridge or Create New	
<new network=""></new>	•
Tunnel IP	Tunnel Mask
Local IP address for tunnel	Netmask
Tunnel ID	Firewall Zone
	<none> •</none>
	Close Apply Changes

Для создания туннеля необходимо проделать следующие шаги:

- 1. Зайдите в раздел VPN / Tunnels → EoIP Tunnels и создайте новый туннель кнопкой Add Tunnel.
- 2. В открывшихся настройках туннеля укажите имя туннеля в поле Name, если требуется.
- 3. В поле Local Address укажите интерфейс через который будет работать туннель.
- 4. В поле Remote Address необходимо указать адрес удаленной точки туннеля.
- 5. В поле Add to Bridge or Create New необходимо выбрать локальную сеть с которой будет создан мост или же задать отдельный адрес туннельного интерфейса.
- 6. В случае если в предыдущем пункте выбран вариант задания отдельного адреса для интерфейса туннеля необходимо в полях **Tunnel IP** и **Tunnel Mask** указать IP адрес и маску сети для интерфейса туннеля.

- 7. Поле **Tunnel ID** предназначено для задания идентификационного номера туннеля, в случае если создается несколько туннелей с терминированием на одной удаленной точке, для того чтобы текущий роутер и удаленный могли различать пакеты разных туннелей.
- 8. Поле Firewall Zone предназначено для ассоциации туннеля с одной из зон фаервола.

9. L2TPv3 туннели

L2TPv3 (англ. Layer 2 Tunneling Protocol — протокол туннелирования второго уровня версия 3) — в компьютерных сетях туннельный протокол, использующийся для поддержки виртуальных частных сетей.

Для настройки туннеля необходимо зайти в раздел VPN/Tunnels → L2TPv3 и добавить новый туннель по кнопке Add Tunnel.

В открывшемся окне настроек (см. рисунок ниже) заполнить поля согласно таблице приведенной далее.

Create new L2TP

Name			
Local Address		Remote Address	
loopback	~	Only remote IP	
Add to Bridge or Create New		Firewall Zone	
<new network=""></new>	~	<none></none>	~
Tunnel IP		Tunnel Mask	
Local IP address for tunnel		Netmask	
Tunnel ID		Remote Tunnel ID	
0			
Session ID		Remote Session ID	
0			
Encapsulation		L2 Specific Header Type	
ip	~	none	~

Рис. 19. Настройка L2TP3-туннеля

Apply Changes

Close

Таблица 10. Настройки L2TP3

Поля	Описание
Name	Название туннеля.
Local Address	Локальный интерфейс на роутере через который будет устанавливаться соединение.
Remote Address	IP-адрес удаленной сети, участвующей в туннеле.
Add to Bridge or Create New	Установление моста с каким-то из локальных интерфейсов (lan) роутера или создание отдельного интерфейса со своей подсетью - <new network="">.</new>
Tunnel IP	IP адрес туннельного интерфейса.
Tunnel Mask	Маска сети туннельного интерфейса.
Tunnel ID	ID — идентификатор туннеля на данном устройстве.
Session ID	ID — идентификатор сессии на данном устройстве.
Firewall Zone	Включение туннельного интерфейса в одну из зон фаервола.
Remote Tunnel ID	ID — идентификатор удаленного конца туннеля.
Remote Session ID	ID — идентификатор сессии на удаленном конце туннеля.
Encapsulation	Выбор способа идентификации сессии туннеля, для синхронизации настройки с двух сторон туннеля.
L2 Specific Header Type	Указывает специальное поле подуровня L2TPv3 Layer 2 для использования в заголовках пакетов данных в соответствии с RFC3931

10. Термины и сокращения

GSM - стандарт сотовой связи («СПС-900» в РФ);

GPRS – стандарт передачи данных в сетях операторов сотовой связи «поколения 2.5G» основанный на пакетной коммутации (до 56 Кбит/с);

EDGE – преемник стандарта GPRS, представитель «поколения 2.75G», основанный на пакетной коммутации (до 180 Кбит/с);

HSPA (HSDPA, HSUPA) – технология беспроводной широкополосной радиосвязи, использующая пакетную передачу данных и являющаяся надстройкой к мобильным сетям WCDMA/UMTS, представитель «поколения 3G» (HSUPA - до 3,75 Мбит/с, HSDPA - до 7,2 Мбит/с);

WCDMA - стандарт беспроводной сотовой связи;

3G - общее описание набора стандартов, описывающих работу в широкополосных мобильных сетях UMTS и GSM: GPRS, EDGE, HSPA;

ІР-сеть – компьютерная сеть, основанная на протоколе IPv4 (Internet Protocol) - межсетевой протокол 4 версии. IP-сеть позволяет объединить для взаимодействия и передачи данных различные виды устройств (роутеры, компьютеры, сервера, а так же различное узкоспециализированное оборудование);

ІР-адрес – адрес узла (компьютера, роутера, сервера) в ІР-сети;

Внешний IP-адрес – IP-адрес в сети Интернет, предоставленный провайдером услуг связи в пользование клиенту на своём/его оборудовании для обеспечения прямой связи с оборудованием клиента через сеть Интернет;

Фиксированный внешний IP-адрес – внешний IP-адрес, который не может измениться ни при каких условиях (смена типа оборудования клиента и др.) или событиях (переподключение к сети провайдера и др.); единственной возможностью сменить фиксированный IP-адрес является обращение к провайдеру;

Динамический IP-адрес – IP-адрес, который может меняться при каждом новом подключении к сети;

Динамический внешний IP-адрес – внешний IP-адрес в сети Интернет, изменяющийся, как правило, в одном из следующих случаев:

- при каждом новом подключении к Интернет;
- по истечении срока аренды клиентского локального IP-адреса;
- через заданный промежуток времени;
- в соответствии с другой политикой клиентской адресации провайдера;

Локальный IP-адрес:

• IP-адрес, назначенный локальному интерфейсу роутера, как правило локальный IP-адрес должен находиться в адресном пространстве обслуживаемой роутером сети;

 IP-адрес, присвоенный оборудованием Интернет-провайдера клиентскому устройству в момент подключения к Интернет; данный IP-адрес не может быть использован для получения доступа к клиентскому устройству из вне (через сеть Интернет), он позволяет только пользоваться доступом в Интернет;

Серый/частный/приватный IP-адрес – см. определение для термина "локальный IP-адрес";

Узел сети – объект сети (компьютерной/сотовой), способный получать от других узлов сети и передавать этим узлам служебную и пользовательскую информацию;

Клиент/клиентский узел/удаленный узел/удалённое устройство – устройство, территориально удалённое от места, либо объекта/узла, обсуждаемого в конкретно взятом контексте;

Сетевой экран (firewall) – программный аппаратный комплекс, призванный выполнять задачи защиты обслуживаемой роутером сети, её узлов, а так же самого роутера от: нежелательного трафика, несанкционированного доступа, нарушения их работы, а так же обеспечения целостности и конфиденциальности передаваемой информации на основе предопределённых администратором сети правил и политик обработки трафика в обоих направлениях;

(Удалённая) командная строка, (удалённая) консоль роутера – совокупность программных средств (серверная и клиентская программы Telnet/SSH), позволяющая осуществлять управление роутером посредством консольных команд при отсутствии физического доступа к устройству;

Служебный трафик – трафик, содержащий в себе служебную информацию, предназначенную для контроля работы сети, поддержания целостности передаваемых пользовательских данных и взаимодействия сетевых служб двух и более узлов между собой;

Пользовательские данные (в сети) – информация, создаваемая или используемая оборудованием в сети пользователя, для передачи, обработки и хранения которой было разработано техническое решение;

Нежелательный трафик – трафик, не несущий полезной нагрузки, который тем не менее генерируется одним или несколькими узлами сети, тем самым создавая паразитную нагрузку на сеть;

Сетевая служба – служба, обеспечивающая решения вопросов обработки, хранения и/или передачи информации в компьютерной сети;

Сервер – этот термин может быть использован в качестве обозначения для:

- серверной части программного пакета используемого в вычислительном комплексе;
- роли компонента, либо объекта в структурно-функциональной схеме технического решения, развёртываемого с использованием роутера;
- компьютера, предоставляющего те или иные сервисы (сетевые службы, службы обработки и хранения данных и прочие);

Провайдер – организация, предоставляющая доступ в сеть Интернет;

Оператор сотовой связи – организация, оказывающая услуги передачи голоса и данных, доступа в Интернет и обслуживания виртуальных частных выделенных сетей (VPN) в рамках емкости своей сотовой сети;

Относительный URL-путь – часть строки web-адреса в адресной строке браузера, находящаяся после доменного имени или IP-адреса удалённого узла, и начинающаяся с символа косой черты

(символ «/»), пример:

Исходный web-aдрес: http://192.168.1.1/index.php

Относительный путь: /index.php

"Crossover"-патчкорд – сетевой кабель, проводники которого обжаты таким образом, что его можно использовать для прямого подключения роутера к компьютеру без необходимости использования коммутационного оборудования;

Учётная запись, аккаунт – другое название "личного кабинета" пользователя Интернет-сайта, позволяющего вносить и редактировать его личные данные, настройки;

USB-накопитель – запоминающее устройство, подключаемое к роутеру через USB-интерфейс, и используемое для сохранения/считывания служебной информации роутера; может быть использовано для резервирования настроек роутера, их восстановления, а так же для автоматической конфигурации службы OpenVPN (не сервера OpenVPN).

Сертификат – электронный или печатный документ, выпущенный удостоверяющим центром, для подтверждения принадлежности владельцу открытого ключа или каких-либо атрибутов;

Корневой сертификат – сертификат выданный и подписанный одним и тем же центром сертификации;

Ключ сервера – блок криптографической информации, позволяющий серверу OpenVPN подтвердить свою подлинность в момент попытки получения доступа клиентом к сети, обслуживаемой данным сервером;

Ключ клиента/пользователя – блок криптографической информации, позволяющий пользователю, либо клиентскому узлу идентифицировать себя в системе, к которой он осуществляет попытку доступа;

Топология сети – термин, позволяющий описать конфигурацию сети на разных уровнях взаимодействия информационных систем. Как правило, топология сети формируется администратором/архитектором сети исходя из поставленных задач, решаемых техническим решением, основная идея которого реализуется данной сетью;

Сетевой интерфейс – данный термин имеет несколько определений:

- Аппаратная часть роутера, позволяющая осуществлять на низких уровнях взаимодействия связь с удалёнными узлами, а так же обмениваться с ними информацией;
- Программный виртуальный объект ОС, позволяющий определить правила и порядок следования и обмена информацией между узлами компьютерной сети;

OpenVPN – открытый бесплатный программный продукт, позволяющий создать защищённую виртуальную среду передачи данных внутри IP-сети. Поскольку OpenVPN представляет из себя многофункциональный программный пакет, в различном контексте термин «OpenVPN» может иметь различные значения, самые распространённые из которых: «сервер доступа к сети OpenVPN», «клиент, позволяющий подключиться к OpenVPN-сети», «сеть, либо сектор/уровень/ слой сети, подразумевающий использование ПО OpenVPN»;

ОрепVPN-сеть – IP-сеть, построенная на базе сети, созданной ПО OpenVPN;

(Виртуальное) адресное пространство OpenVPN-сети – адресное пространство IP-сети OpenVPN, призванное добавить сегмент в совокупность всех сетей на пути следования пользовательских данных, то есть обеспечить чёткую декомпозицию маршрута, тем самым упрощая проектирование и обслуживание всего вычислительного комплекса, построенного на базе ПО OpenVPN в целом;

OpenVPN-клиент – см. клиентский узел;

Туннель – виртуальная сущность/технология/объект, позволющая логически выделить конкретно взятый поток данных между двумя узлами, заключая его в отдельное от общего адресное пространство; Авторизация – процедура предоставления надлежащих прав субъекту (пользователю/участнику/клиенту/клиентскому узлу) системы после получения от него запроса на доступ к системе и прохождения проверки его подлинности (аутентификации);

Аутентификация – процедура проверки подлинности субъекта (пользователя/участника/клиента/ клиентского узла) системы путём сравнения предоставленных им на момент подключения реквизитов с реквизитами, соотнесёнными с указанным именем пользователя/логином в базе данных.

11. Контакты

Новые версии прошивок, документации и сопутствующего программного обеспечения можно получить, обратившись по следующим контактам:

Санкт-Петербург

сайт компании в Интернете	www.radiofid.ru
тел. в Санкт-Петербурге	+7 (812) 318 18 19
e-mail	support@radiofid.ru
Telegram	@irzhelpbot

Наши специалисты всегда готовы ответить на все Ваши вопросы, помочь в установке, настройке и устранении проблемных ситуаций при эксплуатации оборудования.

В случае возникновения проблемной ситуации, при обращении в техническую поддержку, следует указывать версию программного обеспечения, используемого в роутере. Так же рекомендуется к письму прикрепить журналы запуска проблемных сервисов, снимки экранов настроек и любую другую полезную информацию. Чем больше информации будет предоставлено сотруднику технической поддержки, тем быстрее он сможет разобраться в сложившейся ситуации.

обеспе Обеспе

Перед обращением в техническую поддержку настоятельно рекомендуется обновить программное обеспечение роутера до актуальной версии.

Нарушение условий эксплуатации (ненадлежащее использование роутера) лишает владельца устройства права на гарантийное обслуживание.